Advertisements
Advertisements
Question
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
Solution
\[\frac{d}{dx}\left( \frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2} \right)\]
\[ = \frac{1}{3}\frac{d}{dx}\left( x^3 \right) - 2\frac{d}{dx}\left( x^\frac{1}{2} \right) + 5\frac{d}{dx}\left( x^{- 2} \right)\]
\[ = \frac{1}{3}\left( 3 x^2 \right) - 2 . \frac{1}{2} . x^\frac{- 1}{2} + 5\left( - 2 \right) x^{- 3} \]
\[ = x^2 - x^\frac{- 1}{2} - 10 x^{- 3}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
eax + b
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\tan \sqrt{x}\]
ex log a + ea long x + ea log a
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
(x3 + x2 + 1) sin x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x5 ex + x6 log x
x−4 (3 − 4x−5)
x−3 (5 + 3x)
(ax + b) (a + d)2
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
`(a + b sin x)/(c + d cos x)`