English

(Ax + B) (A + D)2 - Mathematics

Advertisements
Advertisements

Question

(ax + b) (a + d)2

Solution

\[(ax + b)(a + d )^2 \]
\[\text{ Let } u = ax + b, v = \left( a + d \right)^2 \]
\[\text{ Then }, u' = a, v' = 0\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = u v' + v u'\]
\[\frac{d}{dx}\left( (ax + b)(a + d )^2 \right) = (ax + b) \times 0 + \left( a + d \right)^2 \times a\]
\[ \therefore \frac{d}{dx}\left( (ax + b)(a + d )^2 \right) = a \left( a + d \right)^2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.4 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.4 | Q 27 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x at x = 1.


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


\[\frac{1}{x^3}\]


Differentiate each of the following from first principle:

ex


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


x4 − 2 sin x + 3 cos x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


cos (x + a)


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


x3 sin 


x3 e


x2 ex log 


x2 sin x log 


(x sin x + cos x ) (ex + x2 log x


(1 − 2 tan x) (5 + 4 sin x)


\[e^x \log \sqrt{x} \tan x\] 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


(2x2 − 3) sin 


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Find the derivative of 2x4 + x.


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×