English

Find the derivative of x–3 (5 + 3x). - Mathematics

Advertisements
Advertisements

Question

Find the derivative of x–3 (5 + 3x).

Sum

Solution

Let f (x) = x– 3 (5 + 3x)     ...(1)

Differentiating (1) with respect to x, we get

f'(x) = (x-3) (5 + 3x) + (x-3) (5 + 3x)

= f'(x) = (-3) x-3-1 (5 + 3x) + (x-3) (0 + 3)

= `3x-4 (5 + 3x) + x-3. (3)

= -15x-4 + 9x-3 + 3x-3

= -15x-4 - 6x-3

= `(-15)/x^4 - 6/x^3`

∴ f'(x) = `(-3)/ x^4 (5 + 2x)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.2 [Page 313]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.2 | Q 9.3 | Page 313

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x at x = 1.


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{2}{x}\]


\[\frac{1}{x^3}\]


\[\frac{x^2 - 1}{x}\]


(x + 2)3


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


tan (2x + 1) 


\[\tan \sqrt{x}\]


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


x5 ex + x6 log 


(x sin x + cos x ) (ex + x2 log x


\[e^x \log \sqrt{x} \tan x\] 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×