Advertisements
Advertisements
Question
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
Solution
\[y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}} = \frac{1}{\sqrt{a}} x^\frac{1}{2} + \sqrt{a} x^\frac{- 1}{2} \]
\[\frac{dy}{dx} = \frac{1}{\sqrt{a}}\frac{1}{2} x^\frac{- 1}{2} + \sqrt{a}\left( \frac{- 1}{2} \right) x^\frac{- 3}{2} \]
\[LHS = 2xy \frac{dy}{dx}\]
\[ = 2x \left( \frac{1}{\sqrt{a}} x^\frac{1}{2} + \sqrt{a} x^\frac{- 1}{2} \right)\left( \frac{1}{\sqrt{a}}\frac{1}{2} x^\frac{- 1}{2} + \sqrt{a}\left( \frac{- 1}{2} \right) x^\frac{- 3}{2} \right)\]
\[ = 2x\left( \frac{1}{2a} - \frac{1}{2x} + \frac{1}{2x} - \frac{a}{2 x^2} \right)\]
\[ = 2x\left( \frac{1}{2a} - \frac{a}{2 x^2} \right)\]
\[ = \left( \frac{x}{a} - \frac{a}{x} \right)\]
\[ = RHS \]
\[\text{ Hence, proved } . \]
APPEARS IN
RELATED QUESTIONS
Find the derivative of `2x - 3/4`
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x + 1}{x + 2}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
x2 sin x
3x + x3 + 33
(2x2 + 1) (3x + 2)
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
2 sec x + 3 cot x − 4 tan x
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 sin x
x2 ex log x
\[\frac{2^x \cot x}{\sqrt{x}}\]
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]