Advertisements
Advertisements
Question
\[\frac{1}{\sqrt{3 - x}}\]
Solution
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{1}{\sqrt{3 - x - h}} - \frac{1}{\sqrt{3 - x}}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( \sqrt{3 - x} - \sqrt{3 - x - h} \right)}{h\sqrt{3 - x}\sqrt{3 - x - h}}\]
\[ = \lim_{h \to 0} \frac{\left( \sqrt{3 - x} - \sqrt{3 - x - h} \right)}{h\sqrt{3 - x}\sqrt{3 - x - h}} \times \frac{\left( \sqrt{3 - x} + \sqrt{3 - x - h} \right)}{\left( \sqrt{3 - x} + \sqrt{3 - x - h} \right)}\]
\[ = \lim_{h \to 0} \frac{\left( 3 - x - 3 + x + h \right)}{h\sqrt{3 - x}\sqrt{3 - x - h}\left( \sqrt{3 - x} + \sqrt{3 - x - h} \right)}\]
\[ = \lim_{h \to 0} \frac{h}{h\sqrt{3 - x}\sqrt{3 - x - h}\left( \sqrt{3 - x} + \sqrt{3 - x - h} \right)}\]
\[ = \lim_{h \to 0} \frac{1}{\sqrt{3 - x}\sqrt{3 - x - h}\left( \sqrt{3 - x} + \sqrt{3 - x - h} \right)}\]
\[ = \frac{1}{\sqrt{3 - x}\sqrt{3 - x - 0}\left( \sqrt{3 - x} + \sqrt{3 - x - 0} \right)}\]
\[ = \frac{1}{\left( 3 - x \right) \left( 2\sqrt{3 - x} \right)}\]
\[ = \frac{1}{2 \left( 3 - x \right)^\frac{3}{2}}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x at x = 1.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = tan x at x = 0
\[\frac{1}{\sqrt{x}}\]
\[\frac{x + 1}{x + 2}\]
\[\frac{x + 2}{3x + 5}\]
\[\sqrt{2 x^2 + 1}\]
x ex
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
x2 ex
tan2 x
\[\tan \sqrt{x}\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 sin x
x2 ex log x
xn tan x
(x3 + x2 + 1) sin x
(1 +x2) cos x
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is