Advertisements
Advertisements
Question
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Solution
Let f(x) = `(a + b sinx)/(c + d cosx)`
∴ `f'(x) = ([d/dx (a + b sinx)](c + d cos x)- (a + b sin x)d/dx(c + d cosx))/(c + dcosx)^2`
= `(b cosx(c + dcosx) - (a + b sinx)(-d sin x))/(c + d cosx)^2`
= `(bc cosx + bd cos^2 x +ad sinx + bd sin^2 x)/(c + dcosx)^2`
= `(bc cosx + ad sinx + bd(sin^2x + cos^2 x))/(c + dcosx)^2`
= `(bd cosx + ad sinx + bd)/(c + dcosx)^2`
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\cos \sqrt{x}\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
x3 sin x
x2 sin x log x
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]