English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): a+bsinxc+dcosx - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`

Sum

Solution

Let f(x) = `(a + b sinx)/(c + d cosx)`

∴ `f'(x) = ([d/dx (a + b sinx)](c + d cos x)- (a + b sin x)d/dx(c + d cosx))/(c + dcosx)^2`

= `(b cosx(c + dcosx) - (a + b sinx)(-d sin x))/(c + d cosx)^2`

= `(bc cosx + bd cos^2 x +ad sinx + bd sin^2 x)/(c + dcosx)^2`

= `(bc cosx + ad sinx + bd(sin^2x + cos^2 x))/(c + dcosx)^2`

= `(bd cosx + ad sinx + bd)/(c + dcosx)^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 318]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 20 | Page 318

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\cos \sqrt{x}\]


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 sin 


x2 sin x log 


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×