English

Differentiate in Two Ways, Using Product Rule and Otherwise, the Function (1 + 2 Tan X) (5 + 4 Cos X). Verify that the Answers Are the Same. - Mathematics

Advertisements
Advertisements

Question

Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 

Solution

\[{\text{ Product rule } (1}^{st} \text{ method }):\]
\[\text { Let } u = 1 + 2 \tan x; v = 5 + 4 \cos x\]
\[\text{ Then }, u' = 2 \sec^2 x; v' = - 4 \sin x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( 1 + 2 \tan x \right)\left( 5 + 4 \cos x \right) \right] = \left( 1 + 2 \tan x \right)\left( - 4 \sin x \right) + \left( 5 + 4 \cos x \right)\left( 2 \sec^2 x \right)\]
\[ = - 4 \sin x - 8 \tan x \sin x + 10 \sec^2 x + 8 \sec x\]
\[ = - 4 \sin x + 10 \sec^2 x + \left( \frac{8}{\cos x} - \frac{8 \sin^2 x}{\cos x} \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8\left( \frac{1 - \sin^2 x}{\cos x} \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8\left( \frac{\cos^2 x}{\cos x} \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8 \cos x\]
\[ 2^{nd} \text{ method }:\]
\[\left( 1 + 2 \tan x \right)\left( 5 + 4 \cos x \right) = 5 + 4 \cos x + 10 \tan x + 8 \sin x\]
\[\text{ Now, we have }:\]
\[\frac{d}{dx}\left[ \left( 1 + 2 \tan x \right)\left( 5 + 4 \cos x \right) \right] = \frac{d}{dx}\left( 5 + 4 \cos x + 10 \tan x + 8 \sin x \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8 \cos x\]
\[\text{ Using both the methods, we get the same answer } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.4 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.4 | Q 25 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (xx at x = 1

 


k xn


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


tan (2x + 1) 


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\] 


3x + x3 + 33


2 sec x + 3 cot x − 4 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x2 ex log 


xn loga 


(x3 + x2 + 1) sin 


x3 ex cos 


x4 (3 − 4x−5)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×