Advertisements
Advertisements
Question
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
Solution
\[{\text{ Product rule } (1}^{st} \text{ method }):\]
\[\text { Let } u = 1 + 2 \tan x; v = 5 + 4 \cos x\]
\[\text{ Then }, u' = 2 \sec^2 x; v' = - 4 \sin x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( 1 + 2 \tan x \right)\left( 5 + 4 \cos x \right) \right] = \left( 1 + 2 \tan x \right)\left( - 4 \sin x \right) + \left( 5 + 4 \cos x \right)\left( 2 \sec^2 x \right)\]
\[ = - 4 \sin x - 8 \tan x \sin x + 10 \sec^2 x + 8 \sec x\]
\[ = - 4 \sin x + 10 \sec^2 x + \left( \frac{8}{\cos x} - \frac{8 \sin^2 x}{\cos x} \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8\left( \frac{1 - \sin^2 x}{\cos x} \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8\left( \frac{\cos^2 x}{\cos x} \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8 \cos x\]
\[ 2^{nd} \text{ method }:\]
\[\left( 1 + 2 \tan x \right)\left( 5 + 4 \cos x \right) = 5 + 4 \cos x + 10 \tan x + 8 \sin x\]
\[\text{ Now, we have }:\]
\[\frac{d}{dx}\left[ \left( 1 + 2 \tan x \right)\left( 5 + 4 \cos x \right) \right] = \frac{d}{dx}\left( 5 + 4 \cos x + 10 \tan x + 8 \sin x \right)\]
\[ = - 4 \sin x + 10 \sec^2 x + 8 \cos x\]
\[\text{ Using both the methods, we get the same answer } .\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) x at x = 1
k xn
(x + 2)3
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
tan (2x + 1)
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
3x + x3 + 33
2 sec x + 3 cot x − 4 tan x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x2 ex log x
xn loga x
(x3 + x2 + 1) sin x
x3 ex cos x
x−4 (3 − 4x−5)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]