Advertisements
Advertisements
Question
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
Solution
\[\frac{d}{dx}\left( \frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3} \right)\]
\[ = \frac{d}{dx}\left( \cos ec x + 2^x . 2^3 + \frac{4}{\frac{\log 3}{\log x}} \right)\]
\[ = \frac{d}{dx}\left( \cos ec x \right) + 2^3 \frac{d}{dx}\left( 2^x \right) + \frac{4}{\log 3}\frac{d}{dx}\left( \log x \right)\]
\[ = - \cos ec x cot x + 2^3 . 2^x . \log 2 + \frac{4}{\log 3} . \frac{1}{x}\]
\[ = - \cos ec x cot x + 2^{x + 3} . \log 2 + \frac{4}{x\log 3}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x at x = 1.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
\[\frac{x^2 + 1}{x}\]
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
\[\tan \sqrt{x}\]
(2x2 + 1) (3x + 2)
log3 x + 3 loge x + 2 tan x
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
xn loga x
x4 (5 sin x − 3 cos x)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]