English

If Y = ( Sin X 2 + Cos X 2 ) 2 , Find D Y D X a T X = π 6 . - Mathematics

Advertisements
Advertisements

Question

\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]

Solution

\[\frac{dy}{dx} = \frac{d}{dx} \left( \sin \frac{x}{2} + \cos \frac{x}{2} \right)^2 \]
\[ = \frac{d}{dx}\left( \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2 \sin \frac{x}{2}\cos \frac{x}{2} \right)\]
\[ = \frac{d}{dx}\left( 1 + \sin x \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( \sin x \right)\]
\[ = 0 + \cos x\]
\[ = \cos x\]
\[\frac{dy}{dx} at x =\frac{\pi}{6}= cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.3 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.3 | Q 19 | Page 34

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of `2x - 3/4`


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point:


\[\frac{x^2 + 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

 x sin x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\tan \sqrt{x}\]


 log3 x + 3 loge x + 2 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


(x sin x + cos x) (x cos x − sin x


logx2 x


\[e^x \log \sqrt{x} \tan x\] 


x4 (3 − 4x−5)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×