English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin (x + a) - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)

Sum

Solution

Let f(x) = sin (x + a)

f(x + h) = sin (x + h + a)

By first principle,

f'(x) = `lim_(h->0)(f(x + h) - f(x))/h`

= `lim_(h->0)(sin (x + h + a) - sin (x + a))/h`

= `lim_(h->0)1/h [2cos  ((x + h + a + x + a)/2) sin  ((x + h + a - x - a)/2)]`

= `lim_(h->0)1/h [(2 cos  (2x + 2a + h)/2)  sin (h/2)]`

= `lim_(h->0)1/h [( cos  (2x + 2a + h)/2)  {sin (h/2)/(h/2)}]`

= `lim_(h->0)1/h [((2x + 2a + h)/2)  lim_(h->0){sin (h/2)/((h/2))}]`     `["As"  h ->0 => h/2 ->0]`

= `cos  ((2x + 2a)/ 2) xx 1`       `[lim_(x->0) (sin x)/x = 1]`

= cos (x + a)

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 317]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 14 | Page 317

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x5 (3 – 6x–9).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point:


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 - 1}{x}\]


 x2 + x + 3


Differentiate each of the following from first principle:

ex


x ex


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[3^{x^2}\]


x4 − 2 sin x + 3 cos x


ex log a + ea long x + ea log a


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x2 ex log 


xn tan 


xn loga 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{x + \cos x}{\tan x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Find the derivative of x2 cosx.


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×