English

X 5 − Cos X Sin X - Mathematics

Advertisements
Advertisements

Question

\[\frac{x^5 - \cos x}{\sin x}\] 

Solution

\[\text{ Let } u = x^5 - \cos x; v = \sin x\]
\[\text{ Then }, u' = 5 x^4 + \sin x; v' = \cos x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x^5 - \cos x}{\sin x} \right) = \frac{\sin x\left( 5 x^4 + \sin x \right) - \left( x^5 - \cos x \right)\cos x}{\sin^2 x}\]
\[ = \frac{- x^5 \cos x + 5 x^4 \sin x + \left( \sin^2 x + \cos^2 x \right)}{\sin^2 x}\]
\[ = \frac{- x^5 \cos x + 5 x^4 \sin x + 1}{\sin^2 x}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 26 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x5 (3 – 6x–9).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (xx at x = 1

 


Find the derivative of f (x) = cos x at x = 0


\[\frac{2}{x}\]


\[\frac{1}{x^3}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

 eax + b


x ex


Differentiate  of the following from first principle: 

− x


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\sin \sqrt{2x}\]


\[\cos \sqrt{x}\]


(2x2 + 1) (3x + 2) 


 log3 x + 3 loge x + 2 tan x


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


(2x2 − 3) sin 


x5 (3 − 6x−9


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×