English

If F (1) = 1, F' (1) = 2, Then Write the Value of Lim X → 1 √ F ( X ) − 1 √ X − 1 - Mathematics

Advertisements
Advertisements

Question

If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 

Solution

\[\lim_{x \to 1} \frac{\sqrt{f\left( x \right)} - 1}{\sqrt{x} - 1}\]
\[ = \lim_{x \to 1} \frac{\sqrt{f\left( x \right)} - 1}{\sqrt{x} - 1} \times \frac{\sqrt{f\left( x \right)} + 1}{\sqrt{f\left( x \right)} + 1} \times \frac{\sqrt{x} + 1}{\sqrt{x} + 1}\]
\[ = \lim_{x \to 1} \frac{\left( f\left( x \right) - 1 \right)\left( \sqrt{x} + 1 \right)}{\left( x - 1 \right)\left( \sqrt{f\left( x \right)} + 1 \right)}\]
\[ = \lim_{x \to 1} \frac{f\left( x \right) - 1}{x - 1} \times \lim_{x \to 1} \frac{\left( \sqrt{x} + 1 \right)}{\left( \sqrt{f\left( x \right)} + 1 \right)}\]
\[ = f'\left( 1 \right) \times \frac{1 + 1}{\sqrt{f\left( 1 \right)} + 1}\]
\[ = 2 \times \frac{2}{1 + 1}\]
\[ = 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.6 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.6 | Q 11 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = x2 − 2 at x = 10


\[\frac{1}{\sqrt{x}}\]


\[\frac{1}{\sqrt{3 - x}}\]


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


\[\frac{2x + 3}{x - 2}\] 


x ex


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 sin 


sin x cos x


x2 sin x log 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b) (a + d)2


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×