Advertisements
Advertisements
Question
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Solution
\[\lim_{x \to 1} \frac{\sqrt{f\left( x \right)} - 1}{\sqrt{x} - 1}\]
\[ = \lim_{x \to 1} \frac{\sqrt{f\left( x \right)} - 1}{\sqrt{x} - 1} \times \frac{\sqrt{f\left( x \right)} + 1}{\sqrt{f\left( x \right)} + 1} \times \frac{\sqrt{x} + 1}{\sqrt{x} + 1}\]
\[ = \lim_{x \to 1} \frac{\left( f\left( x \right) - 1 \right)\left( \sqrt{x} + 1 \right)}{\left( x - 1 \right)\left( \sqrt{f\left( x \right)} + 1 \right)}\]
\[ = \lim_{x \to 1} \frac{f\left( x \right) - 1}{x - 1} \times \lim_{x \to 1} \frac{\left( \sqrt{x} + 1 \right)}{\left( \sqrt{f\left( x \right)} + 1 \right)}\]
\[ = f'\left( 1 \right) \times \frac{1 + 1}{\sqrt{f\left( 1 \right)} + 1}\]
\[ = 2 \times \frac{2}{1 + 1}\]
\[ = 2\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = x2 − 2 at x = 10
\[\frac{1}{\sqrt{x}}\]
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
\[\frac{2x + 3}{x - 2}\]
x ex
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 sin x
sin x cos x
x2 sin x log x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b) (a + d)2
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]