Advertisements
Advertisements
Question
\[\frac{e^x + \sin x}{1 + \log x}\]
Solution
\[\text{ Let } u = e^x + \sin x; v = 1 + \log x\]
\[\text{ Then }, u' = e^x + \cos x; v' = \frac{1}{x}\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{e^x + \sin x}{1 + \log x} \right) = \frac{\left( 1 + \log x \right)\left( e^x + \cos x \right) - \left( e^x + \sin x \right)\left( \frac{1}{x} \right)}{\left( 1 + \log x \right)^2}\]
\[ = \frac{x\left( 1 + \log x \right)\left( e^x + \cos x \right) - \left( e^x + \sin x \right)}{x \left( 1 + \log x \right)^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
Find the derivative of 99x at x = 100.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x + 1}{x + 2}\]
Differentiate of the following from first principle:
eax + b
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 ex
\[\sqrt{\tan x}\]
\[\tan \sqrt{x}\]
log3 x + 3 loge x + 2 tan x
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
x3 sin x
xn loga x
\[\frac{2^x \cot x}{\sqrt{x}}\]
logx2 x
x3 ex cos x
x−4 (3 − 4x−5)
x−3 (5 + 3x)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]