English

Find the Derivative of the Following Function at the Indicated Point: Sin 2x at X = π 2 - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]

Solution

\[\text{ We have }: \]
\[f'\left( \frac{\pi}{2} \right) = \lim_{h \to 0} \frac{f\left( \frac{\pi}{2} + h \right) - f\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin2\left( \frac{\pi}{2} + h \right) - \sin2\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin(\pi + 2h) - 0}{h}\]
\[ = \lim_{h \to 0} \frac{- \sin2h}{h} \times \frac{2}{2} \]
\[ = \lim_{h \to 0} - \frac{\sin 2h}{2h} \times 2 \]
\[ = - 2\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.1 [Page 3]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.1 | Q 7.4 | Page 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = x2 − 2 at x = 10


\[\frac{x + 1}{x + 2}\]


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


tan2 


3x + x3 + 33


(2x2 + 1) (3x + 2) 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


x5 ex + x6 log 


(1 − 2 tan x) (5 + 4 sin x)


sin2 


\[e^x \log \sqrt{x} \tan x\] 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


(ax + b) (a + d)2


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


(ax2 + cot x)(p + q cos x)


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×