Advertisements
Advertisements
Question
tan2 x
Solution
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan^2 \left( x + h \right) - \tan^2 x}{h}\]
\[ = \lim_{h \to 0} \frac{\left[ \tan \left( x + h \right) + \tan x \right]\left[ \tan \left( x + h \right) - \tan x \right]}{h}\]
\[ = \lim_{h \to 0} \frac{\left[ \frac{\sin \left( x + h \right)}{\cos \left( x + h \right)} + \frac{\sin x}{\cos x} \right]\left[ \frac{\sin (x + h)}{\cos (x + h)} - \frac{\sin x}{\cos x} \right]}{h}\]
\[ = \lim_{h \to 0} \frac{\left[ \sin \left( x + h \right) \cos x + \cos \left( x + h \right) \sin x \right]\left[ \sin \left( x + h \right) \cos x - \cos \left( x + h \right) \sin x \right]}{h \cos^2 x \cos^2 \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{\left[ \sin \left( 2x + h \right) \right]\left[ \sin h \right]}{h \cos^2 x \cos^2 \left( x + h \right)}\]
\[ = \frac{1}{\cos^2 x} \lim_{h \to 0} \sin \left( 2x + h \right) \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\cos^2 \left( x + h \right)}\]
\[ = \frac{1}{\cos^2 x} \sin \left( 2x \right) \left( 1 \right)\frac{1}{\cos^2 x}\]
\[ = \frac{1}{\cos^2 x} 2 \sin x \cos x \frac{1}{\cos^2 x}\]
\[ = 2 \times \frac{\sin x}{\cos x} \times \frac{1}{\cos^2 x}\]
\[ = 2 \tan x \sec^2 x\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) = cos x at x = 0
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
Differentiate each of the following from first principle:
e−x
Differentiate each of the following from first principle:
x2 ex
\[\sin \sqrt{2x}\]
cos (x + a)
x2 ex log x
xn tan x
sin x cos x
x5 ex + x6 log x
(1 +x2) cos x
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of 2x4 + x.
(ax2 + cot x)(p + q cos x)