Advertisements
Advertisements
Question
sin x cos x
Solution
\[\text{ Let } u = \sin x; v = \cos x\]
\[\text{ Then }, u' = \cos x; v' = - \sin x\]
\[\text{ Using theproduct rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left( \sin x \cos x \right) = \sin x \left( - \sin x \right) + \cos x . \cos x\]
\[ = - \sin^2 x + \cos^2 x\]
\[ = \cos 2x\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of f (x) = x2 − 2 at x = 10
\[\frac{x^2 + 1}{x}\]
(x + 2)3
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan 2x
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
(x3 + x2 + 1) sin x
(x sin x + cos x ) (ex + x2 log x)
sin2 x
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.