Advertisements
Advertisements
Question
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Solution
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( e^{x^2 + 1} \right) = \lim_{h \to 0} \frac{e^{(x + h )^2 + 1} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + h^2 + 2xh + 1} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + 1} e^{h^2 + 2xh} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + 1} \left( e^{h\left( h + 2x \right)} - 1 \right)}{h} \times \frac{\left( h + 2x \right)}{\left( h + 2x \right)}\]
\[ = e^{x^2 + 1} \lim_{h \to 0} \frac{e^{h\left( h + 2x \right)} - 1}{h\left( h + 2x \right)} \lim_{h \to 0} \left( h + 2x \right)\]
\[ = e^{x^2 + 1} \left( 1 \right) \left( 2x \right)\]
\[ = 2x e^{x^2 + 1}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
\[\frac{x + 1}{x + 2}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
x ex
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\sqrt{\tan x}\]
(2x2 + 1) (3x + 2)
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
x3 ex
xn tan x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x5 ex + x6 log x
(x sin x + cos x) (x cos x − sin x)
sin2 x
logx2 x
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b)n (cx + d)n
\[\frac{x}{1 + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is