Advertisements
Advertisements
Question
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Solution
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{\sin \left( x + h \right)}{x + h} - \frac{\sin x}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin \left( x + h \right) - \left( x + h \right) \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \left( \sin x \cos h + \cos x \sin h \right) - x \sin x - h \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h + x \cos x \sin h - x \sin x - h \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h - x \sin x + x \cos x \sin h - h \sin x}{h x \left( x + h \right)}\]
\[ = x \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{h} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = - x \sin x \times \lim_{h \to 0} \frac{h}{2} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = - x \sin x \left( \frac{1}{2} \right) \left( 0 \right) + \frac{cos x}{x} - \frac{sin x}{x^2}\]
\[ = \frac{\cos x}{x} - \frac{\sin x}{x^2}\]
\[ = \frac{x \cos x - \sin x}{x^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x–3 (5 + 3x).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = cos x at x = 0
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
k xn
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
tan 2x
ex log a + ea long x + ea log a
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
xn tan x
sin2 x
logx2 x
x3 ex cos x
x−4 (3 − 4x−5)
(ax + b)n (cx + d)n
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.