English

Differentiate Each of the Following from First Principle: Sin X X - Mathematics

Advertisements
Advertisements

Question

Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]

Solution

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{\sin \left( x + h \right)}{x + h} - \frac{\sin x}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin \left( x + h \right) - \left( x + h \right) \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \left( \sin x \cos h + \cos x \sin h \right) - x \sin x - h \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h + x \cos x \sin h - x \sin x - h \sin x}{h x \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h - x \sin x + x \cos x \sin h - h \sin x}{h x \left( x + h \right)}\]
\[ = x \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{h} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = - x \sin x \times \lim_{h \to 0} \frac{h}{2} + \frac{x \cos x}{x} \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{x + h} - \frac{\sin x}{x} \lim_{h \to 0} \frac{1}{x + h}\]
\[ = - x \sin x \left( \frac{1}{2} \right) \left( 0 \right) + \frac{cos x}{x} - \frac{sin x}{x^2}\]
\[ = \frac{\cos x}{x} - \frac{\sin x}{x^2}\]
\[ = \frac{x \cos x - \sin x}{x^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 3.02 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x–3 (5 + 3x).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of f (xx at x = 1

 


Find the derivative of f (x) = cos x at x = 0


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{1}{x^3}\]


k xn


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

ex


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


 tan 2


ex log a + ea long x + ea log a


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


xn tan 


sin2 


logx2 x


x3 ex cos 


x4 (3 − 4x−5)


(ax + b)n (cx d)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×