Advertisements
Advertisements
Question
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Solution
The given function is
`f(x) = x^100/100 + x^99/99 + ....... + x^2/2 + x + 1`
∴ `d/(dx) f(x) = [(x^100)/100 + (x^99)/99 + .... + (x^2)/2 + x + 1]`
`d/(dx) f(x) = d/(dx)(x^100/100) + d/(dx)(x^99/99) + ... + d/(dx) (x^2/2) + d/(dx)(x) + d/(dx)(1)`
On using theorem `d/(dx)(x^n)` = `nx^(n - 1)`, we obtain
`d/(dx) f(x)` = `(100x^99)/100 + (99^98)/99 + ... + (2x)/2 + 1 + 0`
= x99 + x98 + ..... + x + 1
∴ f'(x) = `x^99 + x^98 + ..... + x + 1`
At x = 0,
f'(0) = 1
At x = 1,
f'(1) = `1^99 + 1^98 + ... + 1 + 1 = [1 + 1 + ... + 1 + 1]_(100 "terms")` = 1 × 100 = 100
Thus, f'(1) = 100 × f'(0)
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
\[\frac{2}{x}\]
\[\frac{1}{x^3}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
(x + 2)3
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
\[\tan \sqrt{x}\]
3x + x3 + 33
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
sin2 x
\[e^x \log \sqrt{x} \tan x\]
x4 (5 sin x − 3 cos x)
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
(ax + b) (a + d)2
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]