English

For the function f(x) = x100100+x9999+...+x22+x+1 Prove that f'(1) = 100 f'(0) - Mathematics

Advertisements
Advertisements

Question

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)

Sum

Solution

The given function is

`f(x) = x^100/100 + x^99/99 + ....... + x^2/2 + x + 1`

∴ `d/(dx) f(x) = [(x^100)/100 + (x^99)/99 + .... + (x^2)/2 + x + 1]`

`d/(dx) f(x) = d/(dx)(x^100/100) + d/(dx)(x^99/99) + ... + d/(dx) (x^2/2) + d/(dx)(x) + d/(dx)(1)`

On using theorem `d/(dx)(x^n)` = `nx^(n - 1)`, we obtain

`d/(dx) f(x)` = `(100x^99)/100 + (99^98)/99 + ... + (2x)/2 + 1 + 0`

= x99 + x98 + ..... + x + 1

∴ f'(x) = `x^99 + x^98 + ..... + x + 1`

At x = 0,

f'(0) = 1

At x = 1,

f'(1) = `1^99 + 1^98 + ... + 1 + 1 = [1 + 1 + ... + 1 + 1]_(100 "terms")` = 1 × 100 = 100

Thus, f'(1) = 100 × f'(0)

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.2 [Page 312]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.2 | Q 5 | Page 312

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


\[\frac{1}{x^3}\]


k xn


\[\frac{1}{\sqrt{3 - x}}\]


(x + 2)3


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


\[\tan \sqrt{x}\] 


3x + x3 + 33


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


sin2 


\[e^x \log \sqrt{x} \tan x\] 


x4 (5 sin x − 3 cos x)


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b) (a + d)2


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×