Advertisements
Advertisements
Question
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Solution
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\sin \left( 3\left( x + h \right) + 1 \right)} - \sqrt{\sin \left( 3x + 1 \right)}}{h} \]
\[ = \lim_{h \to 0} \frac{\sqrt{\sin \left( 3x + 3h + 1 \right)} - \sqrt{\sin \left( 3x + 1 \right)}}{h} \times \frac{\sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)}}{\sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)}}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 3x + 3h + 1 \right) - \sin \left( 3x + 1 \right)}{h \left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)}\]
\[We have:\]
\[ sin C-sin D= 2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{3x + 3h + 1 + 3x + 1}{2} \right) \sin \left( \frac{3x + 3h + 1 - 3x - 1}{2} \right)}{h \left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{6x + 3h + 2}{2} \right) \sin \frac{3h}{2}}{h \left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)}\]
\[ = \lim_{h \to 0} 2 \cos \left( \frac{6x + 3h + 2}{2} \right) \lim_{h \to 0} \frac{\sin \frac{3h}{2}}{h \times \frac{3}{2}} \times \frac{3}{2} \times \lim_{h \to 0} \frac{1}{\left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)} \]
\[ = 2 \cos \left( 3x + 1 \right) \times \left( \frac{3}{2} \right) \times \frac{1}{\sqrt{\sin \left( 3x + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)}}\]
\[ = \frac{3 \cos \left( 3x + 1 \right)}{2\sqrt{\sin \left( 3x + 1 \right)}}\]
\[ \]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) = 99x at x = 100
\[\frac{x + 1}{x + 2}\]
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 ex
tan2 x
tan (2x + 1)
ex log a + ea long x + ea log a
2 sec x + 3 cot x − 4 tan x
cos (x + a)
xn loga x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(1 +x2) cos x
sin2 x
logx2 x
x3 ex cos x
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is