English

Mark the Correct Alternative in Each of the Following: If Y = Sin X + Cos X Sin X − Cos X Then D Y D X at X = 0 is - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 

Options

  • −2      

  •  0         

  • \[\frac{1}{2}\]

  • does not exist

MCQ

Solution

\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] 

Differentiating both sides with respect to x, we get 

\[\frac{dy}{dx} = \frac{\left( \sin x - \cos x \right) \times \frac{d}{dx}\left( \sin x + \cos x \right) - \left( \sin x + \cos x \right) \times \frac{d}{dx}\left( \sin x - \cos x \right)}{\left( \sin x - \cos x \right)^2} \left( \text{ Quotient rule } \right)\]
\[ = \frac{\left( \sin x - \cos x \right) \times \left[ \frac{d}{dx}\left( \sin x \right) + \frac{d}{dx}\left( \cos x \right) \right] - \left( \sin x + \cos x \right) \times \left[ \frac{d}{dx}\left( \sin x \right) - \frac{d}{dx}\left( \cos x \right) \right]}{\left( \sin x - \cos x \right)^2}\]
\[ = \frac{\left( \sin x - \cos x \right)\left( \cos x - \sin x \right) - \left( \sin x + \cos x \right)\left( \cos x + \sin x \right)}{\left( \sin x - \cos x \right)^2}\]
\[ = \frac{- \left( \cos^2 x + \sin^2 x - 2\cos x \sin x \right) - \left( \sin^2 x + \cos^2 x + 2\sin x \cos x \right)}{\left( \sin x - \cos x \right)^2}\]

\[= \frac{- 1 + 2\cos x \sin x - 1 - 2\sin x \cos x}{\left( \sin x - \cos x \right)^2}\]
\[ = \frac{- 2}{\left( \sin x - \cos x \right)^2}\]

Putting x = 0, we get

\[\left( \frac{dy}{dx} \right)_{x = 0} = \frac{- 2}{\left( \sin0 - \cos0 \right)^2} = \frac{- 2}{\left( 0 - 1 \right)^2} = - 2\] 

Thus,

\[\frac{dy}{dx}\] at x = 0 is −2.

Hence, the correct answer is option (a).

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.7 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.7 | Q 9 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{2}{x}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

x2 e


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan (2x + 1) 


\[\sin \sqrt{2x}\]


\[\cos \sqrt{x}\]


3x + x3 + 33


2 sec x + 3 cot x − 4 tan x


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


xn tan 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[e^x \log \sqrt{x} \tan x\] 


x3 ex cos 


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b) (a + d)2


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x}{\sin^n x}\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Find the derivative of 2x4 + x.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×