English

X Sin N X - Mathematics

Advertisements
Advertisements

Question

\[\frac{x}{\sin^n x}\]

Solution

\[\text{ Let } u = x; v = \sin^n x\]
\[\text{ Then }, u' = 1; v' = n \sin^{n - 1} x . \cos x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x}{\sin^n x} \right) = \frac{\sin^n x . 1 - x n \sin^{n - 1} x . \cos x}{\left( \sin^n x \right)^2}\]
\[ = \frac{\sin^{n - 1} x\left( \sin x - nx . \cos x \right)}{\sin^{2n} x}\]
\[ = \frac{\sin x - nx . \cos x}{\sin^{2n - \left( n - 1 \right)} x}\]
\[ = \frac{\sin x - nx\cos x}{\sin^{n + 1} x}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 28 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


 x2 + x + 3


Differentiate  of the following from first principle:

e3x


x ex


Differentiate  of the following from first principle: 

− x


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


 tan 2


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


3x + x3 + 33


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


cos (x + a)


x3 sin 


x5 ex + x6 log 


(1 +x2) cos x


\[e^x \log \sqrt{x} \tan x\] 


x3 ex cos 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{x + \cos x}{\tan x}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Find the derivative of f(x) = tan(ax + b), by first principle.


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×