Advertisements
Advertisements
Question
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Solution
Let f(x) = (ax + b)n . Accordingly, f(x + h) = {a(x + h) + b}n = (ax + ah + b)n
By first principle,
f(x) = `lim_(h->0) (f(x + h) - f(x))/h`
= `lim_(h->0) ((ax + ah + b)^n - (ax + b)^n)/h`
= `lim_(h->0) ((ax + b)^n (1 + (ah)/(ax + b))^n - (ax + b)^n)/h`
= `(ax + b)^n lim_(h->0)((1 + (ah)/(ax + b))^n - 1)/h`
= `(ax + b)^n lim_(h->0) 1/h [{1 + n}((ah)/(ax + b)) + (n(n - 1))/2 ((ah)/(ax + b))^2 + ...}-1]` (Using binomial theorem)
= `(ax + b)^n lim_(h->0)1/h [n ((ah)/(ax + b)) + (n (n - 1)a^2h^2)/(2(ax + b)^2] + ("Terms containing higher degrees of h"))]`
= `(ax + b)^n lim_(h->0) [(na)/(ax + b) + (n(n + 1)a^2 h)/(2 (ax + b))^2 + ...]`
= `(ax + b)^n [(na)/(ax + b) + 0]`
= `na(ax + b)^n/((ax + b))`
= na (ax + b)n - 1
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
k xn
x2 + x + 3
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
3x + x3 + 33
log3 x + 3 loge x + 2 tan x
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
cos (x + a)
xn tan x
(x sin x + cos x) (x cos x − sin x)
(x sin x + cos x ) (ex + x2 log x)
(2x2 − 3) sin x
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b)n (cx + d)n
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x + \cos x}{\tan x}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.