English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (ax + b)n - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n

Sum

Solution

Let f(x) = (ax + b)n . Accordingly, f(x + h) = {a(x + h) + b}n = (ax + ah + b)n

By first principle,

f(x) = `lim_(h->0) (f(x + h) - f(x))/h`

= `lim_(h->0) ((ax + ah + b)^n - (ax + b)^n)/h`

= `lim_(h->0) ((ax + b)^n (1 + (ah)/(ax + b))^n - (ax + b)^n)/h`

= `(ax + b)^n lim_(h->0)((1 + (ah)/(ax + b))^n - 1)/h`

= `(ax + b)^n lim_(h->0) 1/h [{1 + n}((ah)/(ax + b)) + (n(n - 1))/2 ((ah)/(ax + b))^2 + ...}-1]`    (Using binomial theorem)

= `(ax + b)^n lim_(h->0)1/h [n ((ah)/(ax + b)) + (n (n - 1)a^2h^2)/(2(ax + b)^2] + ("Terms containing higher degrees of h"))]`

= `(ax + b)^n lim_(h->0) [(na)/(ax + b) + (n(n + 1)a^2 h)/(2 (ax + b))^2 + ...]`

= `(ax + b)^n [(na)/(ax + b) + 0]`

= `na(ax + b)^n/((ax + b))`

= na (ax + b)n - 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 317]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 12 | Page 317

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{2}{x}\]


k xn


 x2 + x + 3


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


3x + x3 + 33


 log3 x + 3 loge x + 2 tan x


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


cos (x + a)


xn tan 


(x sin x + cos x) (x cos x − sin x


(x sin x + cos x ) (ex + x2 log x


(2x2 − 3) sin 


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b)n (cx d)


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{x + \cos x}{\tan x}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×