English

Differentiate Each of the Following from First Principle: √ Sin 2 X - Mathematics

Advertisements
Advertisements

Question

Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 

Solution

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\sin \left( 2x + 2h \right)} - \sqrt{\sin 2x}}{h} \times \frac{\sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x}}{\sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x}}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h \right) - \sin 2x}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[\text{ We have }:\]
\[sin C-sin D= 2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{2x + 2h + 2x}{2} \right) \sin \left( \frac{2x + 2h - 2x}{2} \right)}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( 2x + h \right) \sin h}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[ = \lim_{h \to 0} 2 \cos \left( 2x + h \right) \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)} \]
\[ = 2 \cos 2x \left( 1 \right) \frac{1}{\sqrt{\sin 2x} + \sqrt{\sin 2x}}\]
\[ = \frac{2 \cos 2x}{2\sqrt{\sin 2x}}\]
\[ = \frac{\cos 2x}{\sqrt{\sin 2x}}\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 3.01 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


 tan 2


\[\tan \sqrt{x}\]


x4 − 2 sin x + 3 cos x


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


cos (x + a)


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 sin 


x2 ex log 


x5 (3 − 6x−9


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×