Advertisements
Advertisements
Question
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Solution
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\sin \left( 2x + 2h \right)} - \sqrt{\sin 2x}}{h} \times \frac{\sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x}}{\sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x}}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h \right) - \sin 2x}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[\text{ We have }:\]
\[sin C-sin D= 2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{2x + 2h + 2x}{2} \right) \sin \left( \frac{2x + 2h - 2x}{2} \right)}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( 2x + h \right) \sin h}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[ = \lim_{h \to 0} 2 \cos \left( 2x + h \right) \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)} \]
\[ = 2 \cos 2x \left( 1 \right) \frac{1}{\sqrt{\sin 2x} + \sqrt{\sin 2x}}\]
\[ = \frac{2 \cos 2x}{2\sqrt{\sin 2x}}\]
\[ = \frac{\cos 2x}{\sqrt{\sin 2x}}\]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
\[\frac{2}{x}\]
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan 2x
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
cos (x + a)
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 sin x
x2 ex log x
x5 (3 − 6x−9)
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Find the derivative of f(x) = tan(ax + b), by first principle.