Advertisements
Advertisements
Question
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Solution
\[\frac{dy}{dx} = \frac{d}{dx}\left( \frac{2 - 3 \cos x}{\sin x} \right)\]
\[ = \frac{d}{dx}\left( \frac{2}{\sin x} \right) - \frac{d}{dx}\left( \frac{3 \cos x}{\sin x} \right)\]
\[ = 2\frac{d}{dx}\left( \cos ec x \right) - 3\frac{d}{dx}\left( \cot x \right)\]
\[ = - 2 \cos ec x \cot x + 3 \cos e c^2 x\]
\[\frac{dy}{dx} at x=\frac{\pi}{4}= - 2 \cos ec \frac{\pi}{4} \cot \frac{\pi}{4} + 3 \cos e c^2 \frac{\pi}{4}\]
\[ = - 2\left( \sqrt{2} \right)\left( 1 \right) + 3 \left( \sqrt{2} \right)^2 \]
\[ = - 2\sqrt{2} + 6\]
\[ = 6 - 2\sqrt{2}\]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
Find the derivative of 99x at x = 100.
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) = 99x at x = 100
x2 + x + 3
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan (2x + 1)
(2x2 + 1) (3x + 2)
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
xn loga x
x5 ex + x6 log x
(x sin x + cos x ) (ex + x2 log x)
sin2 x
(2x2 − 3) sin x
x5 (3 − 6x−9)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]