Advertisements
Advertisements
Question
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Solution
\[\text{ Given }: x<2\]
\[\therefore 2-x>0\]
\[\frac{d}{dx}\left( \sqrt{x^2 - 4x + 4} \right)\]
\[ = \frac{d}{dx}\left( \sqrt{\left( 2 - x \right)^2} \right)\]
\[ = \frac{d}{dx}\left( 2 - x \right) (\because 2-x>0)\]
\[ = 0 - 1\]
\[ = - 1\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
tan 2x
x4 − 2 sin x + 3 cos x
\[\frac{2 x^2 + 3x + 4}{x}\]
2 sec x + 3 cot x − 4 tan x
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
x3 sin x
x3 ex
x5 ex + x6 log x
(x sin x + cos x) (x cos x − sin x)
x4 (5 sin x − 3 cos x)
x5 (3 − 6x−9)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
`(a + b sin x)/(c + d cos x)`