Advertisements
Advertisements
प्रश्न
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
उत्तर
\[\text{ Given }: x<2\]
\[\therefore 2-x>0\]
\[\frac{d}{dx}\left( \sqrt{x^2 - 4x + 4} \right)\]
\[ = \frac{d}{dx}\left( \sqrt{\left( 2 - x \right)^2} \right)\]
\[ = \frac{d}{dx}\left( 2 - x \right) (\because 2-x>0)\]
\[ = 0 - 1\]
\[ = - 1\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–3 (5 + 3x).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
ex log a + ea long x + ea log a
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
sin x cos x
x2 sin x log x
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
(ax + b) (a + d)2
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]