Advertisements
Advertisements
प्रश्न
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
उत्तर
\[\text{ Let } u = \sqrt{a} + \sqrt{x}; v = \sqrt{a} - \sqrt{x}\]
\[\text{ Then }, u' = \frac{1}{2\sqrt{x}}; v' = \frac{- 1}{2\sqrt{x}}\]
\[\text{ Using thequotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}} \right) = \frac{\left( \sqrt{a} - \sqrt{x} \right)\frac{1}{2\sqrt{x}} - \left( \sqrt{a} + \sqrt{x} \right)\left( \frac{- 1}{2\sqrt{x}} \right)}{\left( \sqrt{a} - \sqrt{x} \right)^2}\]
\[ = \frac{\sqrt{a} - \sqrt{x} + \sqrt{a} + \sqrt{x}}{2\sqrt{x} \left( \sqrt{a} - \sqrt{x} \right)^2}\]
\[ = \frac{2\sqrt{a}}{2\sqrt{x} \left( \sqrt{a} - \sqrt{x} \right)^2}\]
\[ = \frac{\sqrt{a}}{\sqrt{x} \left( \sqrt{a} - \sqrt{x} \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x5 (3 – 6x–9).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{1}{x^3}\]
(x + 2)3
\[\sqrt{2 x^2 + 1}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
tan2 x
2 sec x + 3 cot x − 4 tan x
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
(1 − 2 tan x) (5 + 4 sin x)
(2x2 − 3) sin x
\[\frac{e^x}{1 + x^2}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Find the derivative of x2 cosx.