हिंदी

√ a + √ X √ a − √ X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 

उत्तर

\[\text{ Let } u = \sqrt{a} + \sqrt{x}; v = \sqrt{a} - \sqrt{x}\]
\[\text{ Then }, u' = \frac{1}{2\sqrt{x}}; v' = \frac{- 1}{2\sqrt{x}}\]
\[\text{ Using thequotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}} \right) = \frac{\left( \sqrt{a} - \sqrt{x} \right)\frac{1}{2\sqrt{x}} - \left( \sqrt{a} + \sqrt{x} \right)\left( \frac{- 1}{2\sqrt{x}} \right)}{\left( \sqrt{a} - \sqrt{x} \right)^2}\]
\[ = \frac{\sqrt{a} - \sqrt{x} + \sqrt{a} + \sqrt{x}}{2\sqrt{x} \left( \sqrt{a} - \sqrt{x} \right)^2}\]
\[ = \frac{2\sqrt{a}}{2\sqrt{x} \left( \sqrt{a} - \sqrt{x} \right)^2}\]
\[ = \frac{\sqrt{a}}{\sqrt{x} \left( \sqrt{a} - \sqrt{x} \right)^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 15 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x5 (3 – 6x–9).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{\sqrt{x}}\]


\[\frac{1}{x^3}\]


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

 eax + b


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


tan2 


2 sec x + 3 cot x − 4 tan x


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

(1 − 2 tan x) (5 + 4 sin x)


(2x2 − 3) sin 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×