हिंदी

A + Sin X 1 + a Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{a + \sin x}{1 + a \sin x}\] 

उत्तर

Let us use the quotient rule here.
We have:
u = a + sin x and v =1 + a sin x
u' = cos x and v'=a cos 

\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{a + \sin x}{1 + a\sin x} \right) = \frac{(1 + a\sin x)(\cos x) - (a + \sin x)(a\cos x)}{(1 + a\sin x )^2}\]
\[ = \frac{\cos x + a\sin x \cos x - a^2 \cos x - a \sin x \cos x}{(1 + a\sin x )^2}\]
\[ = \frac{\cos x - a^2 \cos x}{(1 + a\sin x )^2}\]
\[ = \frac{(1 - a^2 )\cos x}{(1 + a \sin x )^2}\] 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 16 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


x ex


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


(2x2 + 1) (3x + 2) 


2 sec x + 3 cot x − 4 tan x


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


(1 − 2 tan x) (5 + 4 sin x)


x4 (3 − 4x−5)


x−3 (5 + 3x


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×