हिंदी

If Y = 2 X 9 3 − 5 7 X 7 + 6 X 3 − X , Find D Y D X a T X = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 

उत्तर

\[\frac{dy}{dx} = \frac{d}{dx}\left( \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x \right)\]
\[ = \frac{2}{3}\frac{d}{dx}\left( x^9 \right) - \frac{5}{7}\frac{d}{dx}\left( x^7 \right) + 6\frac{d}{dx}\left( x^3 \right) - \frac{d}{dx}\left( x \right)\]
\[ = \frac{2}{3}\left( 9 x^8 \right) - \frac{5}{7}\left( 7 x^6 \right) + 6\left( 3 x^2 \right) - 1\]
\[ = 6 x^8 - 5 x^6 + 18 x^2 - 1\]
\[\frac{dy}{dx} at x = 1:\]
\[6 \left( 1 \right)^8 - 5 \left( 1 \right)^6 + 18 \left( 1 \right)^2 - 1\]
\[ = 6 - 5 + 18 - 1\]
\[ = 18\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.3 | Q 24 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x + 2}{3x + 5}\]


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


 tan 2


ex log a + ea long x + ea log a


(2x2 + 1) (3x + 2) 


 log3 x + 3 loge x + 2 tan x


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


2 sec x + 3 cot x − 4 tan x


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


(1 +x2) cos x


\[e^x \log \sqrt{x} \tan x\] 


(2x2 − 3) sin 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x + \cos x}{\tan x}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×