हिंदी

A Cos X + B Sin X + C Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{a \cos x + b \sin x + c}{\sin x}\]

उत्तर

\[\frac{d}{dx}\left( \frac{a \cos x + b \sin x + c}{\sin x} \right)\]
\[ = \frac{d}{dx}\left( \frac{a \cos x}{\sin x} \right) + \frac{d}{dx}\left( \frac{b \sin x}{\sin x} \right) + \frac{d}{dx}\left( \frac{c}{\sin x} \right)\]
\[ = a\frac{d}{dx}\left( cot x \right) + \frac{d}{dx}\left( b \right) + c\frac{d}{dx}\left( \cos ec x \right)\]
\[ = - a \cos e c^2 x + 0 - c \cos ec x cot x\]
\[ = - a \cos e c^2 x - c \cos ec x cot x\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.3 | Q 11 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x5 (3 – 6x–9).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{x^3}\]


\[\frac{x + 2}{3x + 5}\]


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

sin x + cos x


tan2 


2 sec x + 3 cot x − 4 tan x


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 sin 


x2 ex log 


xn tan 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x2 sin x log 


x3 ex cos 


(2x2 − 3) sin 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b) (a + d)2


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×