हिंदी

Find the derivative of x–4 (3 – 4x–5). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of x–4 (3 – 4x–5).

योग

उत्तर

Let f(x) = x–4 (3 – 4x–5)

By Leibnitz product rule,

f'(x) = `x^-4 d/(dx) (3 - 4x^-5) + (3 - 4x^-5) d/dx(x^-4)`

= x-4 {0 - 4 (-5) x-5-1} + (3 - 4x-5) (-4) x-4-1

= x-4 (20x-6) + (3 - 4x-5) (-4x-5)

= 20x-10 + 12x-5 + 16x-10

= 36x-10 - 12x-5

= `-12/x^5 + 36/x^10`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise 13.2 [पृष्ठ ३१३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise 13.2 | Q 9.5 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of `2x - 3/4`


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{x^3}\]


(x + 2)3


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle: 

− x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\sin \sqrt{2x}\]


x4 − 2 sin x + 3 cos x


(2x2 + 1) (3x + 2) 


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

(x3 + x2 + 1) sin 


x2 sin x log 


(x sin x + cos x) (x cos x − sin x


(1 +x2) cos x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b) (a + d)2


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Find the derivative of x2 cosx.


`(a + b sin x)/(c + d cos x)`


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×