Advertisements
Advertisements
प्रश्न
Find the derivative of x–4 (3 – 4x–5).
उत्तर
Let f(x) = x–4 (3 – 4x–5)
By Leibnitz product rule,
f'(x) = `x^-4 d/(dx) (3 - 4x^-5) + (3 - 4x^-5) d/dx(x^-4)`
= x-4 {0 - 4 (-5) x-5-1} + (3 - 4x-5) (-4) x-4-1
= x-4 (20x-6) + (3 - 4x-5) (-4x-5)
= 20x-10 + 12x-5 + 16x-10
= 36x-10 - 12x-5
= `-12/x^5 + 36/x^10`
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2x - 3/4`
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
(x + 2)3
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
\[\sin \sqrt{2x}\]
x4 − 2 sin x + 3 cos x
(2x2 + 1) (3x + 2)
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
(x3 + x2 + 1) sin x
x2 sin x log x
(x sin x + cos x) (x cos x − sin x)
(1 +x2) cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b) (a + d)2
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of x2 cosx.
`(a + b sin x)/(c + d cos x)`
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.