हिंदी

(X Sin X + Cos X) (X Cos X − Sin X) - Mathematics

Advertisements
Advertisements

प्रश्न

(x sin x + cos x) (x cos x − sin x

उत्तर

\[u = x \sin x + \cos x; v = x \cos x - \sin x\]
\[u' = x \cos x + \sin x - \sin x = x \cos x ; v' = - x \sin x + \cos x - \cos x = - x \sin x\]
\[ \]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( x \sin x + \cos x \right)\left( x \cos x - \sin x \right) \right] = \left( x \sin x + \cos x \right)\left( - x \sin x \right) + \left( x \cos x - \sin x \right)\left( x \cos x \right)\]
\[ = - x^2 \sin^2 x - x \cos x \sin x + x^2 \cos^2 x - x \cos x \sin x \]
\[ = x^2 \left( \cos^2 x - \sin^2 x \right) - x\left( 2 \sin x \cos x \right)\]
\[ = x^2 \cos \left( 2x \right) - x\left( \sin \left( 2x \right) \right)\]
\[ = x \left[ x \cos \left( 2x \right) - \sin \left( 2x \right) \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.4 | Q 11 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x at x = 1.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


\[\frac{x + 1}{x + 2}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan2 


 tan 2


\[\sqrt{\tan x}\]


\[\sin \sqrt{2x}\]


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


ex log a + ea long x + ea log a


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


x2 ex log 


(1 +x2) cos x


sin2 


x5 (3 − 6x−9


x−3 (5 + 3x


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×