Advertisements
Advertisements
प्रश्न
(x sin x + cos x) (x cos x − sin x)
उत्तर
\[u = x \sin x + \cos x; v = x \cos x - \sin x\]
\[u' = x \cos x + \sin x - \sin x = x \cos x ; v' = - x \sin x + \cos x - \cos x = - x \sin x\]
\[ \]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( x \sin x + \cos x \right)\left( x \cos x - \sin x \right) \right] = \left( x \sin x + \cos x \right)\left( - x \sin x \right) + \left( x \cos x - \sin x \right)\left( x \cos x \right)\]
\[ = - x^2 \sin^2 x - x \cos x \sin x + x^2 \cos^2 x - x \cos x \sin x \]
\[ = x^2 \left( \cos^2 x - \sin^2 x \right) - x\left( 2 \sin x \cos x \right)\]
\[ = x^2 \cos \left( 2x \right) - x\left( \sin \left( 2x \right) \right)\]
\[ = x \left[ x \cos \left( 2x \right) - \sin \left( 2x \right) \right]\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
\[\frac{x + 1}{x + 2}\]
x2 + x + 3
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan2 x
tan 2x
\[\sqrt{\tan x}\]
\[\sin \sqrt{2x}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
ex log a + ea long x + ea log a
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{2 x^2 + 3x + 4}{x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
x2 ex log x
(1 +x2) cos x
sin2 x
x5 (3 − 6x−9)
x−3 (5 + 3x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]