Advertisements
Advertisements
प्रश्न
Differentiate of the following from first principle:
x sin x
उत्तर
\[ = \lim_{h \to 0} \frac{\left( x + h \right) \sin\left( x + h \right) - x \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)\left( \sin x \cos h + \cos x \sin h \right) - x \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h + x \cos x \sin h + h \sin x \cos h + h \cos x \sin h}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h - x \sin x + x \cos x \sin h + h \sin x \cos h + h \cos x \sin h - x \sin x}{h}\]
\[ = x \sin x \lim_{h \to 0} \frac{\left( \cos h - 1 \right)}{h} + x \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} \cos h + \cos x \lim_{h \to 0} \sin h\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + x \cos x \left( 1 \right) + \sin x \left( 1 \right) + \cos x \left( 0 \right)\]
\[ = x \sin x \times \frac{- h}{2} + x \cos x \left( 1 \right) + \sin x \left( 1 \right) + \cos x \left( 0 \right)\]
\[ = - 2x \sin x \left( \frac{1}{2} \right)\left( 0 \right) + x \cos x + \sin x \]
\[ = x \cos x + \sin x \]
\[ \]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) x at x = 1
\[\frac{2}{x}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
(x + 2)3
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan2 x
tan 2x
x4 − 2 sin x + 3 cos x
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
2 sec x + 3 cot x − 4 tan x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
cos (x + a)
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
xn tan x
xn loga x
(x3 + x2 + 1) sin x
x2 sin x log x
logx2 x
(2x2 − 3) sin x
x−4 (3 − 4x−5)
\[\frac{3^x}{x + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{x}{\sin^n x}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
`(a + b sin x)/(c + d cos x)`