हिंदी

Differentiate of the Following from First Principle: X Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate  of the following from first principle:

 x sin x

उत्तर

\[\ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right) \sin\left( x + h \right) - x \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)\left( \sin x \cos h + \cos x \sin h \right) - x \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h + x \cos x \sin h + h \sin x \cos h + h \cos x \sin h}{h}\]
\[ = \lim_{h \to 0} \frac{x \sin x \cos h - x \sin x + x \cos x \sin h + h \sin x \cos h + h \cos x \sin h - x \sin x}{h}\]
\[ = x \sin x \lim_{h \to 0} \frac{\left( \cos h - 1 \right)}{h} + x \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} \cos h + \cos x \lim_{h \to 0} \sin h\]
\[ = x \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + x \cos x \left( 1 \right) + \sin x \left( 1 \right) + \cos x \left( 0 \right)\]
\[ = x \sin x \times \frac{- h}{2} + x \cos x \left( 1 \right) + \sin x \left( 1 \right) + \cos x \left( 0 \right)\]
\[ = - 2x \sin x \left( \frac{1}{2} \right)\left( 0 \right) + x \cos x + \sin x \]
\[ = x \cos x + \sin x \]
\[ \]
\[\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 2.09 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of f (xx at x = 1

 


\[\frac{2}{x}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


(x + 2)3


Differentiate  of the following from first principle:

 eax + b


Differentiate of the following from first principle:

(−x)−1


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


tan2 


 tan 2


x4 − 2 sin x + 3 cos x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


2 sec x + 3 cot x − 4 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


cos (x + a)


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


xn tan 


xn loga 


(x3 + x2 + 1) sin 


x2 sin x log 


logx2 x


(2x2 − 3) sin 


x4 (3 − 4x−5)


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{x}{\sin^n x}\]


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×