Advertisements
Advertisements
प्रश्न
`(a + b sin x)/(c + d cos x)`
उत्तर
`d/(dx) ((a + b sin x)/(c + d cos x))`
= `((c + d cos x) * d/(dx) (a + b sin x) - (a + b sin x) d/(dx) (c + d + cos x))/(c + d cos x)^2`
= `((c + d cos x) (b cos x) - (a + b sin x)(- d sin x))/(c + d cos x)^2` .....[Using quotient rule]
= `(cb cos x + bd cos^2x + ad sin x + bd sin^2x)/(c + d cos x)^2`
= `(cb cos x + ad sin x + bd (cos^2x + sin^2x))/(c + d cos x)^2`
= `(cb cos x + ad sin x + bd)/(c + d cos x)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{x + 2}{3x + 5}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
e3x
(2x2 + 1) (3x + 2)
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x2 sin x log x
sin2 x
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x + \cos x}{\tan x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.