हिंदी

Mark the Correct Alternative in of the Following: If Y = 1 + X 1 ! + X 2 2 ! + X 3 3 ! + . . . Then D Y D X = - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 

विकल्प

  •  y + 1          

  • y − 1          

  • y   

  •  y2

MCQ

उत्तर

\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\] 

Differentiating both sides with respect to x, we get \[\frac{dy}{dx} = \frac{d}{dx}\left( 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . . \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( \frac{x}{1!} \right) + \frac{d}{dx}\left( \frac{x^2}{2!} \right) + \frac{d}{dx}\left( \frac{x^3}{3!} \right) + \frac{d}{dx}\left( \frac{x^4}{4!} \right) + . . . \]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{1}{1!}\frac{d}{dx}\left( x \right) + \frac{1}{2!}\frac{d}{dx}\left( x^2 \right) + \frac{1}{3!}\frac{d}{dx}\left( x^3 \right) + \frac{1}{4!}\frac{d}{dx}\left( x^4 \right) + . . . \]
\[ = 0 + \frac{1}{1!} \times 1 + \frac{1}{2!} \times 2x + \frac{1}{3!} \times 3 x^2 + \frac{1}{4!} \times 4 x^3 + . . . \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right)\]

\[= 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . . \left[ \frac{n}{n!} = \frac{1}{\left( n - 1 \right)!} \right]\]
\[ = y\]

\[\therefore \frac{dy}{dx} = y\]

Hence, the correct answer is option (c).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.7 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.7 | Q 3 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of 99x at x = 100.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of f (x) = cos x at x = 0


\[\frac{x^2 + 1}{x}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate each of the following from first principle:

ex


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

sin x + cos x


\[\tan \sqrt{x}\]


ex log a + ea long x + ea log a


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


2 sec x + 3 cot x − 4 tan x


xn tan 


(1 − 2 tan x) (5 + 4 sin x)


\[e^x \log \sqrt{x} \tan x\] 


(2x2 − 3) sin 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


(ax + b) (a + d)2


\[\frac{x}{1 + \tan x}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Find the derivative of x2 cosx.


Find the derivative of f(x) = tan(ax + b), by first principle.


`(a + b sin x)/(c + d cos x)`


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×