Advertisements
Advertisements
प्रश्न
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
पर्याय
y + 1
y − 1
y
y2
उत्तर
\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]
Differentiating both sides with respect to x, we get \[\frac{dy}{dx} = \frac{d}{dx}\left( 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . . \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( \frac{x}{1!} \right) + \frac{d}{dx}\left( \frac{x^2}{2!} \right) + \frac{d}{dx}\left( \frac{x^3}{3!} \right) + \frac{d}{dx}\left( \frac{x^4}{4!} \right) + . . . \]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{1}{1!}\frac{d}{dx}\left( x \right) + \frac{1}{2!}\frac{d}{dx}\left( x^2 \right) + \frac{1}{3!}\frac{d}{dx}\left( x^3 \right) + \frac{1}{4!}\frac{d}{dx}\left( x^4 \right) + . . . \]
\[ = 0 + \frac{1}{1!} \times 1 + \frac{1}{2!} \times 2x + \frac{1}{3!} \times 3 x^2 + \frac{1}{4!} \times 4 x^3 + . . . \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right)\]
\[= 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . . \left[ \frac{n}{n!} = \frac{1}{\left( n - 1 \right)!} \right]\]
\[ = y\]
\[\therefore \frac{dy}{dx} = y\]
Hence, the correct answer is option (c).
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of f (x) = x2 − 2 at x = 10
\[\frac{1}{\sqrt{3 - x}}\]
(x + 2)3
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
tan2 x
tan 2x
\[\tan \sqrt{x}\]
ex log a + ea long x + ea log a
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
2 sec x + 3 cot x − 4 tan x
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 sin x
x2 ex log x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x2 sin x log x
x5 ex + x6 log x
(x sin x + cos x ) (ex + x2 log x)
sin2 x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is