Advertisements
Advertisements
प्रश्न
(x + 2)3
उत्तर
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 \right)^3 - \left( x + 2 \right)^3}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 - x - 2 \right)\left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]}{h}\]
\[ = \lim_{h \to 0} \frac{h\left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]}{h}\]
\[ = \lim_{h \to 0} \left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]\]
\[ = \left[ \left( x + 0 + 2 \right)^2 + \left( x + 0 + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]\]
\[ = \left( x + 2 \right)^2 + \left( x + 2 \right)^2 + \left( x + 2 \right)^2 \]
\[ = 3 \left( x + 2 \right)^2\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = cos x at x = 0
\[\frac{1}{x^3}\]
\[\frac{x + 1}{x + 2}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
(−x)−1
tan2 x
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
(x3 + x2 + 1) sin x
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x5 (3 − 6x−9)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.