Advertisements
Advertisements
प्रश्न
\[\tan \sqrt{x}\]
उत्तर
\[text{ Let } f(x) = \tan x^2 \]
\[\text{ Thus, we have }: \]
\[f(x + h) = \tan (x + h )^2 \]
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan (x + h )^2 - \tan x^2}{h}\]
\[ = \lim_{h \to 0} \frac{\sin\left( \left( x + h \right)^2 - x^2 \right)}{h \cos \left( x + h \right)^2 \cos x^2} \left[ \because \tan A - \tan B = \frac{\sin (A - B)}{\cos A \cos B} \right]\]
\[ = \lim_{h \to 0} \frac{\sin( x^2 + h^2 + 2hx - x^2 )}{h\cos \left( x + h \right)^2 \cos x^2}\]
\[ = \lim_{h \to 0} \frac{\sin(h\left( h + 2x) \right)}{h\left( h + 2x \right) \cos \left( x + h \right)^2 \cos x^2} \times \left( h + 2x \right)\]
\[ = \lim_{h \to 0} \frac{\sin(h\left( h + 2x) \right)}{(h\left( h + 2x) \right)} \lim_{h \to 0} \frac{h + 2x}{\cos(x + h )^2 \cos x^2} \left[ As \lim_{h \to 0} \frac{\sin(h\left( h + 2x) \right)}{(h\left( h + 2x) \right)} = 1 \right]\]
\[ = 1 \times \frac{2x}{\cos^2 x^2}\]
\[ = 2x \sec^2 x^2 \]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) = tan x at x = 0
\[\frac{2}{x}\]
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
cos (x + a)
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
sin x cos x
x2 sin x log x
(1 +x2) cos x
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b) (a + d)2
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Find the derivative of f(x) = tan(ax + b), by first principle.
`(a + b sin x)/(c + d cos x)`