Advertisements
Advertisements
प्रश्न
\[\tan \sqrt{x}\]
उत्तर
\[text{ Let } f(x) = \tan x^2 \]
\[\text{ Thus, we have }: \]
\[f(x + h) = \tan (x + h )^2 \]
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan (x + h )^2 - \tan x^2}{h}\]
\[ = \lim_{h \to 0} \frac{\sin\left( \left( x + h \right)^2 - x^2 \right)}{h \cos \left( x + h \right)^2 \cos x^2} \left[ \because \tan A - \tan B = \frac{\sin (A - B)}{\cos A \cos B} \right]\]
\[ = \lim_{h \to 0} \frac{\sin( x^2 + h^2 + 2hx - x^2 )}{h\cos \left( x + h \right)^2 \cos x^2}\]
\[ = \lim_{h \to 0} \frac{\sin(h\left( h + 2x) \right)}{h\left( h + 2x \right) \cos \left( x + h \right)^2 \cos x^2} \times \left( h + 2x \right)\]
\[ = \lim_{h \to 0} \frac{\sin(h\left( h + 2x) \right)}{(h\left( h + 2x) \right)} \lim_{h \to 0} \frac{h + 2x}{\cos(x + h )^2 \cos x^2} \left[ As \lim_{h \to 0} \frac{\sin(h\left( h + 2x) \right)}{(h\left( h + 2x) \right)} = 1 \right]\]
\[ = 1 \times \frac{2x}{\cos^2 x^2}\]
\[ = 2x \sec^2 x^2 \]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate each of the following from first principle:
e−x
x ex
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan2 x
tan (2x + 1)
3x + x3 + 33
\[\frac{2 x^2 + 3x + 4}{x}\]
2 sec x + 3 cot x − 4 tan x
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
xn tan x
\[e^x \log \sqrt{x} \tan x\]
x3 ex cos x
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
(ax + b) (a + d)2
\[\frac{x}{1 + \tan x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{1}{a x^2 + bx + c}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.
Find the derivative of f(x) = tan(ax + b), by first principle.