हिंदी

Differentiate Each of the Following from First Principle: E √ a X + B - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]

उत्तर

\[\left( x \right) \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( e^\sqrt{ax + b} \right) = \lim_{h \to 0} \frac{e^\sqrt{ax + ah + b} - e^\sqrt{ax + b}}{h}\]
\[ = a \lim_{h \to 0} \frac{e^\sqrt{ax + ah + b} - e^\sqrt{ax + b}}{\left( ax + ah + b \right) - \left( ax + b \right)}\]
\[ = a \lim_{h \to 0} \frac{e^\sqrt{ax + b} \left( e^\sqrt{ax + ah + b} - \sqrt{ax + b} - 1 \right)}{\left( \sqrt{\left( ax + ah + b \right)} \right)^2 - \left( \sqrt{\left( ax + b \right)} \right)^2}\]
\[ = a e^\sqrt{ax + b} \lim_{h \to 0} \frac{e^\sqrt{ax + ah + b} - \sqrt{ax + b} - 1}{\left( \sqrt{\left( ax + ah + b \right)} - \sqrt{\left( ax + b \right)} \right)\left( \sqrt{\left( ax + ah + b \right)} + \sqrt{\left( ax + b \right)} \right)}\]
\[ = a e^\sqrt{ax + b} \lim_{h \to 0} \frac{e^\sqrt{ax + ah + b} - \sqrt{ax + b} - 1}{\sqrt{\left( ax + ah + b \right)} - \sqrt{\left( ax + b \right)}} \lim_{h \to 0} \frac{1}{\sqrt{\left( ax + ah + b \right)} + \sqrt{\left( ax + b \right)}}\]
\[ = a e^{{}^\sqrt{ax + b}} \left( 1 \right)\frac{1}{2\sqrt{ax + b}}\]
\[ = \frac{a e^{{}^\sqrt{ax + b}}}{2\sqrt{ax + b}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 3.1 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x5 (3 – 6x–9).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of f (x) = 99x at x = 100 


\[\frac{1}{\sqrt{x}}\]


\[\frac{x + 1}{x + 2}\]


k xn


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


x4 − 2 sin x + 3 cos x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


(x3 + x2 + 1) sin 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x2 sin x log 


(2x2 − 3) sin 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×