Advertisements
Advertisements
प्रश्न
x4 − 2 sin x + 3 cos x
उत्तर
\[\frac{d}{dx}\left( x^4 - 2 \sin x + 3 \cos x \right)\]
\[ = \frac{d}{dx}\left( x^4 \right) - 2\frac{d}{dx}\left( \sin x \right) + 3\frac{d}{dx}\left( \cos x \right)\]
\[ = 4 x^3 - 2 \cos x - 3 \sin x\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) x at x = 1
\[\frac{2}{x}\]
\[\frac{x + 1}{x + 2}\]
(x2 + 1) (x − 5)
x ex
\[\sqrt{\tan x}\]
\[\cos \sqrt{x}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
cos (x + a)
x2 ex log x
(x3 + x2 + 1) sin x
x2 sin x log x
(x sin x + cos x) (x cos x − sin x)
\[e^x \log \sqrt{x} \tan x\]
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b)n (cx + d)n
\[\frac{x}{1 + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.
Find the derivative of x2 cosx.
Find the derivative of f(x) = tan(ax + b), by first principle.