हिंदी

Find the derivative of (5x3 + 3x – 1) (x – 1). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of (5x3 + 3x – 1) (x – 1).

योग

उत्तर

Let f (x) = (5x3 + 3x – 1) (x – 1)    ...(1)

Differentiating (1) with respect to x, we get

f'(x) = (5x3 + 3x - 1) (x - 1) + (5x3 + 3x - 1)(x - 1)

= f'(x) = (5.3x2 + 3 - 0) (x - 1) + (5x3 + 3x - 1) (1 - 0)

= (15x2 + 3) (x - 1) + (5x3 + 3x -1) (1)

= 15x3 + 3x - 15x2 - 3 + 5x3 + 3x - 1

∴ f'(x) = 20x3 - 15x2 + 6x - 4

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise 13.2 [पृष्ठ ३१३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise 13.2 | Q 9.2 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{2}{x}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

 x2 sin x


\[\sin \sqrt{2x}\]


(2x2 + 1) (3x + 2) 


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


2 sec x + 3 cot x − 4 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


xn tan 


x5 ex + x6 log 


(x sin x + cos x ) (ex + x2 log x


(1 +x2) cos x


sin2 


logx2 x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b)n (cx d)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×