Advertisements
Advertisements
प्रश्न
\[\frac{\sec x - 1}{\sec x + 1}\]
उत्तर
\[\text{ Then }, u' = \sec x tan x; v' = \sec x \tan x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{sec x - 1}{sec x + 1} \right) = \frac{\left( \sec x + 1 \right)\sec x \tan x - \left( \sec x - 1 \right)\sec x \tan x}{\left( sec x + 1 \right)^2}\]
\[ = \frac{\sec^2 x \tan x + \sec x \tan x - \sec^2 x \tan x + \sec x \tan x}{\left( \sec x + 1 \right)^2}\]
\[ = \frac{2\sec x \tan x}{\left( \sec x + 1 \right)^2}\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
x2 + x + 3
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
cos (x + a)
x2 sin x log x
x3 ex cos x
x−4 (3 − 4x−5)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
(ax2 + cot x)(p + q cos x)