Advertisements
Advertisements
प्रश्न
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
उत्तर
\[\text{ Let } u = \sin x - x \cos x; v = x \sin x + \cos x\]
\[\text{ Then }, u' = \cos x + x \sin x - \cos x; v' = x \cos x + \sin x - \sin x\]
\[ = x \sin x = x \cos x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{\sin x - x \cos x}{x \sin x + \cos x} \right) = \frac{\left( x \sin x + \cos x \right)x \sin x - \left( \sin x - x \cos x \right)x \cos x}{\left( x \sin x + \cos x \right)^2}\]
\[ = \frac{x^2 \sin^2 x + x \cos x \sin x - x \cos x \sin x + x^2 \cos^2 x}{\left( x \sin x + \cos x \right)^2}\]
\[ = \frac{x^2 \left( \sin^2 x + \cos^2 x \right)}{\left( x \sin x + \cos x \right)^2}\]
\[ = \frac{x^2}{\left( x \sin x + \cos x \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 99x at x = 100
\[\frac{1}{\sqrt{x}}\]
\[\frac{x + 2}{3x + 5}\]
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan 2x
3x + x3 + 33
xn loga x
(x3 + x2 + 1) sin x
sin x cos x
logx2 x
\[e^x \log \sqrt{x} \tan x\]
(2x2 − 3) sin x
x−4 (3 − 4x−5)
(ax + b) (a + d)2
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.