हिंदी

Differentiate Each of the Following from First Principle: √ Sin ( 3 X + 1 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\sin \left( 3\left( x + h \right) + 1 \right)} - \sqrt{\sin \left( 3x + 1 \right)}}{h} \]
\[ = \lim_{h \to 0} \frac{\sqrt{\sin \left( 3x + 3h + 1 \right)} - \sqrt{\sin \left( 3x + 1 \right)}}{h} \times \frac{\sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)}}{\sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)}}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 3x + 3h + 1 \right) - \sin \left( 3x + 1 \right)}{h \left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)}\]
\[We have:\]
\[ sin C-sin D= 2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{3x + 3h + 1 + 3x + 1}{2} \right) \sin \left( \frac{3x + 3h + 1 - 3x - 1}{2} \right)}{h \left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{6x + 3h + 2}{2} \right) \sin \frac{3h}{2}}{h \left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)}\]
\[ = \lim_{h \to 0} 2 \cos \left( \frac{6x + 3h + 2}{2} \right) \lim_{h \to 0} \frac{\sin \frac{3h}{2}}{h \times \frac{3}{2}} \times \frac{3}{2} \times \lim_{h \to 0} \frac{1}{\left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)} \]
\[ = 2 \cos \left( 3x + 1 \right) \times \left( \frac{3}{2} \right) \times \frac{1}{\sqrt{\sin \left( 3x + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)}}\]
\[ = \frac{3 \cos \left( 3x + 1 \right)}{2\sqrt{\sin \left( 3x + 1 \right)}}\]
\[ \]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 3.05 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{x^3}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 ex cos 


x4 (5 sin x − 3 cos x)


(2x2 − 3) sin 


x5 (3 − 6x−9


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b)n (cx d)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of 2x4 + x.


Find the derivative of f(x) = tan(ax + b), by first principle.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×