Advertisements
Advertisements
प्रश्न
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
उत्तर
\[\lim_{x \to a} \frac{xf\left( a \right) - af\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{xf\left( a \right) - af\left( x \right) - xf\left( x \right) + xf\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{xf\left( a \right) - xf\left( x \right) + xf\left( x \right) - af\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{- x\left( f\left( x \right) - f\left( a \right) \right) + \left( x - a \right)f\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} - x \lim_{x \to a} \frac{f\left( x \right) - f\left( a \right)}{x - a} + \lim_{x \to a} \frac{\left( x - a \right)f\left( x \right)}{x - a}\]
\[ = - a f'\left( a \right) + f(a)\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) x at x = 1
\[\frac{1}{\sqrt{x}}\]
\[\frac{1}{x^3}\]
\[\frac{x + 1}{x + 2}\]
\[\frac{1}{\sqrt{3 - x}}\]
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan 2x
\[\cos \sqrt{x}\]
ex log a + ea long x + ea log a
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 sin x
sin2 x
logx2 x
x3 ex cos x
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is