हिंदी

Write the Value of Lim X → a X F ( a ) − a F ( X ) X − a - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]

उत्तर

\[\lim_{x \to a} \frac{xf\left( a \right) - af\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{xf\left( a \right) - af\left( x \right) - xf\left( x \right) + xf\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{xf\left( a \right) - xf\left( x \right) + xf\left( x \right) - af\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{- x\left( f\left( x \right) - f\left( a \right) \right) + \left( x - a \right)f\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} - x \lim_{x \to a} \frac{f\left( x \right) - f\left( a \right)}{x - a} + \lim_{x \to a} \frac{\left( x - a \right)f\left( x \right)}{x - a}\]
\[ = - a f'\left( a \right) + f(a)\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.6 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.6 | Q 2 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x–4 (3 – 4x–5).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (xx at x = 1

 


\[\frac{1}{\sqrt{x}}\]


\[\frac{1}{x^3}\]


\[\frac{x + 1}{x + 2}\]


\[\frac{1}{\sqrt{3 - x}}\]


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


 tan 2


\[\cos \sqrt{x}\]


ex log a + ea long x + ea log a


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 sin 


sin2 


logx2 x


x3 ex cos 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×