Advertisements
Advertisements
प्रश्न
\[\sqrt{2 x^2 + 1}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 \left( x + h \right)^2 + 1} - \sqrt{2 x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} - \sqrt{2 x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} - \sqrt{2 x^2 + 1}}{h} \times \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1}}{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1}}\]
\[ = \lim_{h \to 0} \frac{2 x^2 + 2 h^2 + 4xh + 1 - 2 x^2 - 1}{h\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \lim_{h \to 0} \frac{h\left( 2h + 4x \right)}{h\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \lim_{h \to 0} \frac{\left( 2h + 4x \right)}{\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \frac{4x}{\sqrt{2 x^2 + 1} + \sqrt{2 x^2 + 1}}\]
\[ = \frac{4x}{2\sqrt{2 x^2 + 1}}\]
\[ = \frac{2x}{\sqrt{2 x^2 + 1}}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
k xn
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
\[\sqrt{\tan x}\]
\[\sin \sqrt{2x}\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 ex
\[\frac{2^x \cot x}{\sqrt{x}}\]
sin2 x
x3 ex cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x4 (5 sin x − 3 cos x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b)n (cx + d)n
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of 2x4 + x.
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.