हिंदी

2 X + 3 X − 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sqrt{2 x^2 + 1}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 \left( x + h \right)^2 + 1} - \sqrt{2 x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} - \sqrt{2 x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} - \sqrt{2 x^2 + 1}}{h} \times \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1}}{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1}}\]
\[ = \lim_{h \to 0} \frac{2 x^2 + 2 h^2 + 4xh + 1 - 2 x^2 - 1}{h\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \lim_{h \to 0} \frac{h\left( 2h + 4x \right)}{h\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \lim_{h \to 0} \frac{\left( 2h + 4x \right)}{\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \frac{4x}{\sqrt{2 x^2 + 1} + \sqrt{2 x^2 + 1}}\]
\[ = \frac{4x}{2\sqrt{2 x^2 + 1}}\]
\[ = \frac{2x}{\sqrt{2 x^2 + 1}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 1.14 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


k xn


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

x2 e


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\sqrt{\tan x}\]


\[\sin \sqrt{2x}\]


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 e


\[\frac{2^x \cot x}{\sqrt{x}}\] 


sin2 


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b)n (cx d)


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Find the derivative of 2x4 + x.


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×