हिंदी

If for F (X) = λ X2 + μ X + 12, F' (4) = 15 and F' (2) = 11, Then Find λ and μ. - Mathematics

Advertisements
Advertisements

प्रश्न

If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 

उत्तर

\[f'\left( x \right) = \lambda\frac{d}{dx}\left( x^2 \right) + \mu\frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( 12 \right)\]

\[f'\left( x \right) = 2\lambda x + \mu \left( 1 \right)\]

\[\text{ Given }:\]

\[f'\left( 4 \right) = 15\]

\[2\lambda\left( 4 \right) + \mu = 15 \left( \text{ From } \left( 1 \right) \right)\]

\[ \Rightarrow 8\lambda + \mu = 15 \left( 2 \right)\]

\[\text{ Also, given }:\]

\[f'\left( 2 \right) = 11\]

\[2\lambda\left( 2 \right) + \mu = 11 \left( \text{ From } \left( 1 \right) \right)\]

\[4\lambda + \mu = 11 \left( 3 \right)\]

\[\text{ Subtracting equation (3) from equation } (2):\]

\[4\lambda = 4\]

\[\lambda = 1\]

\[\text{ Substituting this in equation } (3):\]

\[4\left( 1 \right) + \mu = 11\]

\[\mu = 7\]

\[\therefore \lambda=1 \text{ and } \mu=7\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.3 | Q 25 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{x^3}\]


 x2 + x + 3


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


x4 − 2 sin x + 3 cos x


3x + x3 + 33


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


(1 − 2 tan x) (5 + 4 sin x)


logx2 x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


(ax + b) (a + d)2


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Find the derivative of 2x4 + x.


Find the derivative of f(x) = tan(ax + b), by first principle.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×