Advertisements
Advertisements
प्रश्न
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
उत्तर
\[\frac{x^2 \cos \frac{\pi}{4}}{\sin x} = x^2 \cos \frac{\pi}{4} cosec x\]
\[\text{ Let } u = x^2 ; v = \cos \frac{\pi}{4}; w = cosec x\]
\[\text{ Then }, u' = 2x; v' = 0; w' = - cosec x \cot x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[\frac{d}{dx}\left( x^2 \cos \frac{\pi}{4} cosec x \right) = 2x \cos \frac{\pi}{4}cosec x + x^2 . 0 . cosec x + x^2 \cos \frac{\pi}{4}\left( - \cosec x \cot x \right)\]
\[ = \cos \frac{\pi}{4}\left( 2x cosec x - x^2 cosec x \cot x \right)\]
\[ = \cos \frac{\pi}{4}\left( \frac{2x}{\sin x} - x^2 \frac{\cot x}{\sin x} \right)\]
\[\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x5 (3 – 6x–9).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
x2 + x + 3
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
\[\tan \sqrt{x}\]
(2x2 + 1) (3x + 2)
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 ex
x2 sin x log x
sin2 x
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x + \cos x}{\tan x}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
`(a + b sin x)/(c + d cos x)`